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Abstract
Monte Carlo atomistic simulations of the properties of �3〈111〉 grain
boundaries in W are carried out. We demonstrate the influence of boron additive
on the resistance of the grain boundary with respect to different shifts. The
interatomic potentials used in these simulations are obtained from ab initio
total-energy calculations. These calculations are performed in the framework of
density functional theory in the coherent potential approximation. A recursion
procedure for extracting A–B-type interatomic potentials is suggested.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Grain boundaries (GBs) sliding in polycrystalline material play a dominant role in plastic
behaviour at high temperatures. The contribution of GB sliding is estimated to be more than
60% in the case of micrograin superplastic deformation [1, 2], which is a totally inhomo-
geneous part of deformation, localizes in a limited zone near the GB, and strongly depends on
the crystallographic structure of the GB. The cohesive energy of the GB is an additional physical
quantity which characterizes the ductility of real metallic materials. The reduced cohesion of
GBs is stated to be one of the major factors limiting ductility and, thus, the fabrication and
reliability of high-strength metallic materials [3, 4]. Intergranular embrittlement in metals is
usually caused by impurities segregating to the GBs. Impurities present in bulk concentrations
of a thousand parts per million (ppm) may lead to drastic decreases of the ductility, fracture
strength, etc. This poses significant processing and application problems and gave rise to
the necessity to estimate energy values that may shed some light on the tendencies in material
strengthening. In a series of papers [5, 6] a thermodynamic theory of embrittlement of interfaces
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by solute segregation was developed. In this theory the important role is played by the quantity
2γ int , the Griffith ideal work of interfacial separation, which controls and determines the
resistance of an interface to brittle fracture. It also depends on the crystallographic structure
of the interface, on its detailed geometry, and on the type of the impurities that are segregated
on the interface.

Because of the experimental difficulties of measuring the energy characteristics in the
micrograin superplastic deformation, a lot of effort has been put into simulating GBs in metals.
In [7] a first-principles simulation of GB sliding in Ge was reported. It was based on total-
energy calculations with local pseudopotentials for the Ge ion cores. The sliding process has
been simulated quasistatically. Prediction and observation of the structural reconstruction in
pure Cu at the �3 GB was discussed in [8], where a simple central-force N -body interatomic
potential (IP) of the Finnis–Sinclair type [9, 10] was used. This IP was fitted to reproduce
the equilibrium density, elastic modulus, and cohesive energy of Cu. Molecular dynamics and
simulated annealing were used to study the asymmetrical�3 tilt GB with a 〈211〉 rotation axis
in Cu. The results of the predictions correspond well with the HRTEM image. In [11] it was
shown that inclusion of the second and fourth moments of the electron spectra is sufficient
to attain a satisfactory agreement with ab initio calculations of structural energy differences,
broken-bond energies, and the energetics of the surface reconstruction.

Recent progress in developing highly efficient ab initio calculations has also made possible
a systematic study of the role of impurities in intergranular cohesion on the electron–atom level
[12]. The atomic configurations and energetics of As impurities in Si GBs were studied in
[13] by combination of image intensity analysis and first-principles calculations with norm-
conserving pseudopotentials. Such calculations, while being very helpful for elucidating
the physics underlying cohesion/decohesion processes, do not allow one to quantify the
ductilizing/embrittling capacity of impurities.

First-principles calculations are still too costly (due to the necessity of performing
enormously time-consuming atomic relaxations, especially in the supercells with the GBs);
therefore atomistic simulations may be quite helpful. In [14] the modified embedded-atom
method (EAM) was applied in calculations of the energy characteristics of the �3〈111〉 GB
in tungsten with different impurities located in the GB plane. Boron is of special interest in
this regard, because in a lot of metals and alloys small boron additions modify their ambient-
temperature properties (see, for example, reference [15]). Atomistic calculations were used to
study the influence of alloying on the intergranular cohesion in W [16, 17]. On the basis of these
simulations it was found that the cohesion of a GB appears to be the controlling factor limiting
the ductility of high-strength metallic alloys, and particularly those containing W. These results
are important for understanding the fundamental physics of interatomic interaction at the GB.

The purpose of our work is to calculate the energy of decohesion and the value of the
slip energy barrier for�3〈111〉 GBs in pure tungsten and tungsten with boron additives which
occupy the interstitial position at the GB. We will present the results of direct calculations
of the shift along the GB and decohesion of the GB. In our calculations, non-empirical
interatomic potentials are used. These potentials are extracted from ab initio calculations
by a recursion procedure [18]. This procedure with some modifications was used in [19, 20]
to study the dislocations, disordered phases, and free energies of the unstable stacking faults in
Si. The model describes very well the local bonding for bulk defects and liquid and amorphous
phases. In our simulations we extend the recursion procedure not only to obtain the interatomic
potentials of pure elements but also to concentrate effort on finding a method for extracting the
interactions of host A atoms with the impurity B. This problem is important if we are planning
to study the influence of additives on the physical properties and relaxations in dilute solid
solutions. We discuss the method of calculation of interatomic A–A and A–B potentials. In
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section 2 of our paper we show the link of the excess mixing energy in substitutional solid
solutions with the interatomic potentials and in section 3 we discuss a scheme for extracting
them from the coherent potential approximation (CPA) calculations. Section 4 is devoted to
the presentation of the formalism used to obtain three-body interatomic A–B potentials. The
potentials obtained are used in section 5 to study the behaviour of the GB in tungsten with the
boron atom placed in the trigonal prism environment of tungsten atoms. The relaxations of the
atoms at the GB are simulated for shifts in the directions parallel and normal to the GB plane.
In section 6 we discuss the results of our simulations for W–B solid solutions, and the results
of simulations of GB elastic properties, and compare the formulated approach with the EAM
formalism.

2. Mixing energy and interatomic potentials

The first step in developing AB interatomic potentials for solid solutions within the recursion
procedure is based on data from non-empirical calculations of the cohesive energy. Assuming
this energy to be known, we turn to the presentation of the cohesive energy in a substitutional
solid solution in terms of pairwise interactions:

E = 1

2

∑
�r,�r ′
�r �=�r ′

[VAA(�r, �r ′)CA(�r)CA(�r ′) + VBB(�r, �r ′)CB(�r)CB(�r ′) + 2VAB(�r, �r ′)CA(�r)CB(�r ′)]

(1)

where VAA(�r, �r ′), VBB(�r, �r ′), and VAB(�r, �r ′) are the pairwise interatomic potentials between
atoms A, atoms B, and between A and B, respectively. The summation is performed over the
vectors �r and �r ′; these are the lattice sites of the Ising lattice. The values CA(�r) and CB(�r ′) are
defined by the following relations:

CA(�r) =
{

1 if the site �r is occupied by the atom A

0 otherwise.

CB(�r) =
{

1 if the site �r is occupied by the atom B

0 otherwise.

Moreover, the condition

CA(�r) + CB(�r) = 1 (2)

is satisfied which means that each site of the lattice is occupied by an atom A or an atom B.
Substituting CB(�r) from equation (2) into equation (1) we obtain

E = 1

2

∑
�r,�r ′
�r �=�r ′

Ṽ (�r, �r ′)CA(�r)CA(�r ′)

+
1

2

∑
�r

[1 − 2CA(�r)]
∑

�r ′
VBB(�r, �r ′) +

∑
�r
CA(�r)

∑
�r ′
VAB(�r, �r ′). (3)

Here

Ṽ (�r, �r ′) = VAA(�r, �r ′) + VBB(�r, �r ′)− 2VAB(�r, �r ′) (4)

is the mixing potential. Taking it into account that

VBB(0) =
∑
�r,�r ′
VBB(�r, �r ′)

VAB(0) =
∑
�r,�r ′
VAB(�r, �r ′)
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and ∑
�r
CA(�r) = NA (5)

where NA is the total number of atoms A, equation (3) takes the form

E = 1

2

∑
�r,�r ′
�r �=�r ′

Ṽ (�r, �r ′)CA(�r)CA(�r ′) +
1

2
[N − 2NA]VBB(0) +NAVAB(0). (6)

The energy per atom with cA = NA/N is

E = 1

2N

∑
�r,�r ′
�r �=�r ′

Ṽ (�r, �r ′)CA(�r)CA(�r ′) +
1

2
[1 − 2cA]VBB(0) + cAVAB(0). (7)

The distribution of atoms A in such a binary alloy may be described by one occupation
probability function n(�r), which is the probability of finding an atom A at the site �r of the
crystal lattice:

n(�r) = 〈CA(�r)〉 (8)

where the averaging is done over the Gibbs canonical ensemble. Performing such averaging,
it is possible to represent the energy per atom in the form

E = 1

2N

∑
�r,�r ′
�r �=�r ′

Ṽ (�r, �r ′)n(�r)n(�r ′) +
1

2
[1 − 2cA]VBB(0) + cAVAB(0). (9)

This approach was used in reference [21] to describe the ordering effects in a binary
substitutional solid solution. Let us consider the case where all positions of the crystal lattice
sites are described by one Bravais lattice. Following the works of Khachaturyan (see reference
[21] and references therein), the function n(�r), which determines the distribution of solute
atoms in an ordering phase, can be expanded in a Fourier series. It can be represented as a
superposition of concentration waves (CWs):

n(�r) = cA +
1

2

∑
j

[Q(�kj )ei�kj ·�r +Q∗(�kj )e−i�kj ·�r ] (10)

where ei�kj ·�r is a static CW, �kj is a non-zero wave vector defined in the first Brillouin zone
of the disordered A–B alloy, the index j denotes the wave vectors in the Brillouin zone, and
Q(�kj ) is a CW amplitude. As shown in reference [21], all Q(�kj ) are linear functions of the
long-range-order parameters of the superlattices that may be formed on the basis of the Ising
lattice of the disordered solid solution. The disappearance of the ordering state immediately
leads to the statement that allQ(�kj ) are equal to zero [22]. Thus equation (9) may be rewritten
in the form

E(c) = 1

2
Ṽ (0)c2

A +
1

2
[1 − 2cA]VBB(0) + cAVAB(0) (11)

where

Ṽ (0) =
∑
�r,�r ′

[VAA(�r, �r ′) + VBB(�r, �r ′)− 2VAB(�r, �r ′)]. (12)

Equation (11) may be presented in the form

E(cA) = E(0) + cAE
(0)
A + c2

AE
(1)
A + · · · (13)
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with E(1)A = Ṽ (0)/2. To clarify the meaning of this coefficient, we may use the model of
regular solid solutions (RSS) for alloys (see, for example, reference [23]):

E(cA) = cAE
′
A + (1 − cA)E

′
A + UcA(1 − cA) (14a)

where E′
A and E′

B are the cohesive energies of the components A and B respectively, and the
last term represents the mixing energy, �E, of such an alloy. It is important to note that in
equation (14a), E′

A and E′
B are taken for the same crystalline lattice as the alloy. Here they

are calculated at the equilibrium lattice parameter for the lattice under consideration. In other
words, if, for example, the alloy exists in bcc structure, then E′

A and E′
B have to be calculated

in the bcc lattice (even if they both or one of them actually does not exist in this lattice).
Their values corresponding to the equilibrium lattice parameter of the bcc structure for pure
A and B components should be taken. Comparing the c2

A-terms in equations (13) and (14) one
immediately gets

E
(1)
A = Ṽ (0)

2
= −U. (14b)

Taking into account that in the approximation of pairwise interactions the cohesive energies
of constituents are

EA = 1

2

∑
i,j
i �=j

VAA(|�ri − �r ′j |) EB = 1

2

∑
i,j
i �=j

VBB(|�ri − �r ′j |)

it is now easy to obtain using equation (12) the following relation:

δE = 2 × 1

2

∑
i,j
i �=j

VAB(|�ri − �r ′j |) = U + EA + EB. (15)

It is easy to see from equation (12) that EA and EB in equation (15) have to be computed for
the lattice parameter of the alloy in the pairwise approximation and thus they do not coincide
with the values E′

A and E′
B. The result presented by equation (15) is very important because

it allows one to extract interatomic potentials for distinct atoms from ab initio calculations.

3. Non-empirical pairwise potentials from CPA calculations

Large-scale atomistic simulations are still useful for modelling a GB with impurities and
especially in the study of GB resistance to deformation, which we are going to consider. In
this modelling the structural energy differences are important and the long-range interaction
potentials are necessary in order to describe accurately a wide range of local atomic
environments.

To obtain interacting potentials an exact procedure for inverting the ab initio energy data
will be used in our simulations. The inversion approach was first formulated in [24] for the pair
potentials and generalized for many-body potentials in [18, 25]. We present only the results
for pair potentials, although the procedure for obtaining many-body interactions for binary
systems is also discussed.

The non-empirical calculations were done in the framework of the single-site coherent
potential approximation (CPA). The most attractive feature of the CPA is that this scheme can
be applied to direct calculations of the electronic structure of randomly or partially ordered
alloys [26–28]. Recent applications of the CPA scheme show that this method reproduces
quite accurately the lattice parameters, the bulk modules, and the enthalpies of formation (see,
e.g., reference [28] and references therein). This accuracy corresponds to the accuracy of other
local density functional methods for completely ordered phases.

The scheme of calculations that is used in our paper includes several steps:
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(a) In this step we perform the CPA calculations, in the framework of the linear muffin-tin
orbital method (LMTO), of the total energies, Etot , for pure tungsten and boron in the bcc
lattice for various lattice parameters, a. These data are used to construct the pressure–
volume diagram (equation of state) at T = 0 for pure elements. In other words we solve
the equation

(∂Etot /∂�)S = −p (16)

for the set of pressures. The requirement that both components have to be calculated in
the same (bcc, in our case) lattice is dictated by the definition of the mixing energy where
all the energies have to be given in the same crystalline structure as the alloy of interest
[23]. Now we use the definition of the cohesive energy

E = −
∫ �0

∞
p d� = −

∫ ∞

�0

p d� (17)

where �0 is the equilibrium volume per atom for the pressure p = 0. Varying �0 in this
integral is equivalent to the uniform expansion or compression of the crystal. Performing
such calculations we obtain the dependence of the cohesive energy on the lattice parameter.
We consider only atomic volumes smaller than 10.50 au3 to avoid the difficulty in the LDA
of accurately representing the energies of isolated atoms [29]. Smooth interpolation of
the LDA data and extrapolation to infinite volume with an exponential tail are used.

(b) With the dependence of cohesive energy on the distance (in the case of pairwise
interactions) obtained, this energy can be written as

E(r) =
∞∑
p=1

npV (spr) (18)

with atomic separation grouped into coordination shells p of radius spr , containing np
atoms each. Uniform dilatation of the lattice is described by varying the parameter r
with the structural quantities {sp} and {np} fixed. The shells are numbered such that
s1 < s2 < s3 < · · ·, and the distances scaled such that s1 = 1. The desired inversion
formula for V [E] may be obtained from equation (18) by rearranging the terms:

V (r) = 1

n1

(
E(r)−

∞∑
p=2

npV (spr)

)
. (19)

Recursive substitution now generates the explicit formula

V (r) = 1

n1
E(r)−

∞∑
p=2

np

n2
1

E(spr) +
∞∑
p,q

npnq

n3
1

E(spsqr)− · · · . (20)

In this way we obtain the ab initio effective pair potentials for both pure tungsten and
boron.

(c) In this step we calculate, in the framework of the CPA formalism, the total energy of an
extremely dilute random solid solution of boron impurity in a tungsten host. The atomic
fraction of boron is taken equal to 1 at.%. The calculations are done for different lattice
parameters. This allows us to obtain the volume dependence of the cohesive energy per
atom for such a solid solution in the same manner as explained in item (a) above.

(d) Using equation (14) we calculate the dependence of the parameterU on the distance, which
together with equation (15) gives also the dependence of δE on the lattice parameter.

(e) Keeping in mind the first part of equation (15), the effective interatomic potentials VAB(r)

are calculated with the recursion formula (20), where we substitute δE(r)/2 for E(r).
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4. Many-body interactions in alloys derived from the recursion procedure

In this section we discuss the formalism used to obtain three-body interatomic potentials for
host atoms with impurities. Our presentation includes not only the recursion formalism for
interatomic interactions of A–A–A and B–B–B types but also A–A–B and A–B–B interactions.
To study the many-body interactions in binary alloys we apply the scheme that was formulated
in [18] for pure solids. In [18] the simplest case of a many-body potential was considered with
volume-independent pair terms and separable three-body terms. For pure solids, subtracting
the pair terms from the ab initio calculated cohesive energy,E(r), forms the many-body energy,
F(r):

F(r) = E(r)− E(pair)(r) (21)

where E(pair)(r) is the energy, which is presented as a sum over pairwise interactions. The
function F(r) is expressed as a sum over pairs of bonds:

F(r) =
∑
i

∑
j �=i
j>i

∑
k �=i,
k>j

g(rij )g(rjk)h(ϑijk) (22)

with cosϑijk = (�rij · �rjk)/(rij rjk) and rij = |�ri − �rj |. This function is assumed to be positive
(F(r) � 0), on the basis of references [18, 30, 31]. Also a particular form for the angular term
h(ϑ) must be assumed to invert F [g, h] to get the radial function g[F, h]. The procedure for
getting g(r) is the same as in the pair potential case: solve equation (22) for g(r) to obtain the
recursion. Grouping bonds into shells, sp, as in section 3 and taking the positive root of the
resulting quadratic equation, the desired expression may be presented in the form

g(r) = −β(r) +
√

[β(r)]2 + 4α11[F(r)− γ (r)]
2α11

(23)

where

αpq =
∑
rij∈sp

∑
rjk∈sq

h(ϑijk) (24)

β(r) =
∞∑
p=2

α1pg(spr) (25)

γ =
∞∑
p=2

∞∑
q=p

αpqg(spr)g(sqr). (26)

In the αpp-sums one must only take k > j contributions into account, to avoid double counting.
An explicit formula like that for the pair potentials can be obtained by substituting in the
recursion procedure using equation (23). The details of the procedure may be found in [18].

From the definition of the function F(r) given by equations (21) and (22) we may note
that accounting for three-body interactions is equivalent to the representation of the energy in
terms of effective interactions, V ∗(ri, rj ), by means of

E(r) = 1

2

∑
i,j
i �=j

V ∗(ri, rj )

where

V ∗(ri, rj ) = V (ri, rj ) +
∑
k,

k �=i,k>j

g(rij )g(rjk)h(ϑijk). (27)
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Here the first term is the pairwise potential and the second one describes the triple interaction
as the angle-dependent interaction of two bonds. These bonds are given by the vectors �rij
and �rjk . The energy of a binary system may now be written in the same form as equation (1)
but with V ∗(ri, rj ) substituting for V (ri, rj ) (which represented the pairwise interactions in
equation (1)):

E = 1

2

∑
i,j
i �=j

(V ∗
AA(|�ri − �rj |)CA(�ri)CA(�rj ) + V ∗

BB(|�ri − �rj |)CB(�ri)CB(�rj )

+ V ∗
AB(|�ri − �rj |)CA(�ri)CB(�rj ) + V ∗

BA(|�ri − �rj |)CB(�ri)CA(�rj )) (28)

where

V ∗
AA(|�ri − �rj |) = VAA(|�ri − �rj |) +

∑
k,

k �=i,k>j

gAA(rij )gAA(rjk)h(ϑijk)CA(�rk) (29)

V ∗
AB(|�ri − �rj |) = VAB(|�ri − �rj |) +

∑
k,

k �=i,k>j

{gAB(rij )gAB(rjk)h(ϑijk)CA(�rk)

+ gAB(rij )gBB(rjk)h(ϑijk)CB(�rk)}. (30)

The expression for VBB(|�ri − �rj |) may be obtained from (29) by making the substitution
A → B, and the expression for VBA(|�ri − �rj |) may be obtained from (30) by making the
substitutions A → B, B → A. In the definition of the effective potentials the ‘environment’
of the pair of atoms is accounted for. Thus, for example, for the effective potential V ∗

AB, both
the interactions of the pair A–B with the third atom A and those with the third atom B are
included. The type of the third atom and its location, i.e. the probability of finding it at the
point rk (when the atom A is in the position ri and B is at rj ) is regulated by the occupation
number CA(rk) or CB(rk).

After making the substitution CB(�rλ) = 1 −CA(�rλ) with λ = i, j, k in equations (29) and
(30), the equation for the energy takes the form (compare with equation (1))

E = 1

2

∑
i,j
i �=j

{
VAA(|�ri − �rj |)CA(�ri)CA(�rj ) + VBB(|�ri − �rj |)[1 − CA(�ri)][1 − CA(�rj )]

+ VAB(|�ri − �rj |)CA(�ri)[1 − CA(�rj )] + VBA(|ri − �rj |)[1 − CA(�ri)]CA(�rj )
+

∑
k,

k �=i,k>j

{gAA(rij )gAA(rjk)h(ϑijk)CA(�ri)CA(�rj )CA(�rk)

+ gBB(rij )gBB(rjk)h(ϑijk)[1 − CA(�ri)][1 − C(�rj )][1 − C(�rk)]
+ gAB(rij )gAB(rjk)h(ϑijk)CA(�ri)[1 − CA(�rj )]CA(�rk)
+ gAB(rij )gBB(rjk)h(ϑijk)CA(�ri)[1 − CA(�rj )][1 − CA(�rk)]
+ gAB(rij )gAA(rjk)h(ϑijk)[1 − CA(�ri)]CA(�rj )CA(�rk)
+ gAB(rij )gAB(rjk)h(ϑijk)[1 − CA(�ri)]CA(�rj )[1 − CA(�rk)]}

}
. (31)

After multiplication of the square brackets, averaging over the Gibbs canonical ensemble as
in section 2, and assuming a random solid solution, we obtain the equation for Ṽ ∗(0) which
unlike Ṽ (0) includes three-body interactions. The details of the technique used to calculate
the averaged values 〈CA(�ri)CA(�rj )CA(�rk)〉 may be found in reference [32].
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Now for the quantity U which is defined as in equation (14b) but with Ṽ ∗(0) instead of
Ṽ (0), we get

U(cA) = −1

2

{∑
i,j
i �=j

{[VAA(|�ri − �rj |) + VBB(|�ri − �rj |)− 2VAB(|�ri − �rj |)]

+
∑
k,

k �=i,k>j

{gAA(rij )gAA(rjk)h(ϑijk)cA + gBB(rij )gBB(rjk)h(ϑijk)[3 − cA]

− gAB(rij )gAB(rjk)h(ϑijk) + gAB(rij )gAA(rjk)h(ϑijk)[1 − cA]

+ gAB(rij )gBB(rjk)h(ϑijk)[cA − 2]}
}
. (32)

It is easy to see thatU now includes pairwise interactions that do not contain the concentration
directly and three-body interactions that manifestly contain the concentration.

Let us turn to defining the radial functions g(r). For the case of interaction of atoms of
the same type, it may be done as for pure elements (see equation (23)). The result obtained
for U(cA) given by equation (32) allows one to construct the additional function F2[gAB, h].
This function depends on the radial function gAB(r) which defines the three-body interactions
between distinct atoms and makes it possible to apply the recursion procedure. F2[gAB, h] is
given by the following equation:

F2 =
∑
i

∑
j �=i,
j>i

∑
k �=i,
k>j

{gAB(rij )gAB(rjk)

+ gAB(rij )[gAA(rjk)(cA − 1) + gBB(rjk)(2 − cA)]}h(ϑijk) (33)

and is defined as

F2 = U + E′′
A + E′′

B − 2E′
AB + F1 (34)

where

E′′
A = 1

2

∑
i,j
i �=j

VAA(|�ri − �rj |) +
∑
i,j,k

j>i,k>j

gAA(rij )gAA(rjk)h(ϑijk) (35)

E′
AB = 1

2

∑
i,j
i �=j

VAB(|�ri − �rj |) (36)

F1 =
∑
i

∑
j,
j>i

∑
k,
k>j

[gAA(rij )gAA(rjk)(cA − 1) + gBB(rij )gBB(rjk)(2 − cA)]h(ϑijk). (37)

E′′
B may be obtained from equation (35) by making the substitution B → A. To calculate

the radial function gAB(r) for distinct atoms, we have to follow a scheme:

(1) calculate the pairwise interatomic potentials VAA(r), VBB(r), VAB(r) as explained in
sections 3 and 4;

(2) calculate the radial functions gAA(r) and gBB(r) using equations (21)–(23);
(3) define the function F2(r) using equations (34)–(37);
(4) solve equation (33), quadratic with respect to gAB(r), which is analogous to the cor-

responding equation for atoms of the same type;
(5) use the recursion procedure to finally obtain gAB(r).



6728 S Dorfman et al

5. Results of simulations

5.1. Development of potentials

The total-energy calculations were performed in the scalar-relativistic approach for a number
of different volumes per atom. All of the calculations were done in the framework of the
LMTO method in the CPA. The convergence criterion for the total energy was 0.001 mRyd.
Details of our calculations are reported in [33]. The dependencies of the cohesive energies on
the distance obtained were used to calculate the effective potentials VW−W(r), VB−B(r), and
VW−B(r) by means of the recursion formula, as was discussed in section 3. These potentials
were obtained in numerical forms and they could be satisfactorily described by the Morse
function

V (r) = De−2λ(r−r0) − 2De−λ(r−r0). (38)

We have plotted these potentials in figure 1. The values of the parameters in equation (38)
are given in table 1. Convergence of the recursion formula was checked in the following way:
we assumed the cohesive energies to be equal to zero at the distances corresponding to the
third, fourth, etc coordination shells (the cut-off radius). We found that the averaged relative
difference in potentials when changing the cut-off radius from the seventh to the eighth shell
is less than 0.1%.

Figure 1. Interatomic potentials VW−W(r), VB−B(r), and VW−B(r) obtained by means of the
recursion equation from the non-empirically calculated dependencies of cohesive energies on the
distance.

To examine the quality of the potentials obtained and the validity of the procedure used,
the Debye temperature for W was calculated. We explored the same methodology as in [34].
The value obtained, 410 K, is in excellent agreement with the measured one (392 K).

After that we checked the applicability of this potential to the properties where the
relaxation effects are important and play a substantial role. To optimize the geometry, the
Monte Carlo (MC) method was used in the generalized simulated-annealing approach (GSA)
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Table 1. Parameters of Morse-type potentials.

D (Ryd) λ (au−1) r0 (au) Interacting atoms

0.04775 0.82330 5.15278 W–W
0.05177 0.57189 2.64138 B–B
0.01816 4.17256 4.67315 W–B

[35–37]. The GSA is based on the correlation between the minimization of a cost function
(conformational energy) and the geometry randomly obtained through slow cooling. In
this technique, an artificial temperature is introduced, and the system is gradually cooled
in complete analogy with the well known annealing technique used in metallurgy when a
molten metal reaches its crystalline state (the global minimum of the thermodynamic energy).
In our case the temperature plays the role of an external noise.

The artificial temperature (or a set of temperatures) acts as a convenient stochastic source
for eventual detraining from local minima. Near the end of the process the system is found
within the attractive basin of the global minimum. The challenge is to cool the system as fast
as possible and still guarantee that no irreversible trapping at any local minimum has occurred.
More precisely, we search for the fastest annealing (which approaches quenching) that allows
finishing the process within the global minimum with the probability equal to one.

The W–W potential (figure 1) was verified in atomistic simulations of a vacancy and di-
vacancy in W. We used a large cluster with more than 5000 atoms. The vacancy was formed
in the centre of the simulation volume. To decrease the computation time, the embedded-field
method was used. In this method a cluster of a much smaller size with 89 atoms of W in the
centre of the large cluster was chosen and the atoms inside this volume were allowed to relax.
The inner cluster is situated in the field of the remaining part of the large cluster. Thus each
atom inside the small cluster is relaxing in the constant field created by the outward part and
in the field of the other relaxing atoms. This last field is time dependent during the calculation
process and depends on the positions of other relaxing atoms.

Our simulations of the energy of the vacancy formation in W in the framework of MC
GSA approach give E(v)f = 4.23 eV. This is in good agreement with experimental data and
with the results of other calculations [38]. We calculated also the value of the diffusion barrier
for the self-diffusion in W, simulating the movement of the atom from the position (a/2)(111)
to (a/2)(000) where the vacancy was situated. In these calculations we relaxed the lattice at
each step of the atom’s movement along the diffusion path. The value of the energy barrier
obtained, which is the migration energy for the self-diffusion in W, is equal to 1.67 eV (the
experimental datum from [39, 40] is 1.63 eV).

In the next step of the calculations we formed two vacancies in the cluster. One of them was
located at (000) while the second one occupied the position of its first, second, etc neighbour.
Again, the geometry of the cluster was relaxed and the energy of the di-vacancy formation,
E
(2v)
f , was calculated. The binding energy, E(2v)

bind , of the di-vacancy in tungsten is defined as

E
(2v)
bind = E(2v)

f −2E(v)f . The results of the calculations are given in table 2. As follows from these
data, the binding energy for the di-vacancy in W is negative for the closest distance between
mono-vacancies and becomes positive for all other distances considered. Such dependence
proves the stability of short-range di-vacancy complexes in bcc W. Di-vacancy formation is
known to be one of the possible explanations of the deviation from the Arrhenius law in the self-
diffusion in bcc metals. The existence of the long-range interaction of vacancies in W is also
clearly demonstrated by the data from table 2, but more distant configurations of di-vacancies
are obtained as being unstable as compared with mono-vacancy formation.
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Table 2. Energies of formation and binding energies of di-vacancies (in eV) that are formed as the
first, second, etc neighbours in bcc W.

Neighbours E
(2v)
f E

(2v)
bind

1 8.140 −0.32
2 8.470 0.010
3 8.755 0.295
4 8.650 0.190
5 8.777 0.317
6 8.720 0.260
7 8.562 0.102

Unfortunately we have not succeeded in finding any reliable information for testing W–B
and B–B potentials (figure 1). The reasons are obvious: B is typically in the amorphous
state. A good test for the B–B IP should be a comparison of the formation energies aimed at
studying the relative stability of different polymorphic modifications of B. As far as we know,
experimental data on B amorphous structure are rare and not well established. In this case it
would be a purely scientific exercise to compare these energies. The accuracy of determination
of the relative stability of different B allotropic phases (including the amorphous one with the
measured radial distribution function) does not allow comparison of theoretical data with
experimentally obtained enthalpies of formation. The comparison of any experimental data on
dilute solid solutions of B in W hosts with non-empirical calculations is even more complicated:
typically these solutions have the same properties as the host. Theoretical simulations become
highly attractive here.

5.2. Application to the grain boundary

The reported potentials were applied to simulate the relaxation of the�3〈111〉 GB in tungsten.
In figure 2 we show the structure of the part of the cluster that was used in these simulations.
One boron atom was located in the trigonal prism interstitial position at the GB. For the chosen
cluster this corresponds to a concentration of B at the GB equal approximately to 1 at.%.
Periodic boundary conditions were used. Nine planes above and below the GB were allowed
to relax. Thus, the distance between the GBs periodic in the Z-direction is 18 planes, which
allows us to assume that GBs do not interact with each other. In figure 3 the GB is located at
Z = 0, while the direction X is defined from the left to the right side in figure 3(b). The axis
Z was directed normally to the plane of the GB with the positive direction to the upper part
of the figure. The initial cluster consisted of 432 atoms for simulations in tungsten and one
B atom was added then to simulate its influence on the properties of the GB. The cluster was
relaxed using the GSA technique without and with the B atom. We performed several different
simulations. In the first step the atoms in the initial cluster with the GB were relaxed. After
that the lower part of the cluster was shifted along the X-direction. This shift was performed
with the step 0.5 Å. At each step the system was relaxed to obtain the minimal total energy,
which was calculated together with the energies of shifted but non-relaxed configurations. The
number of configurations treated at each step was about 106. In figure 3 we show, as an example,
the relaxed configurations of the cluster in the vicinity of the GB with non-shifted parts of the
cluster and the same when they are shifted by 2.5 Å. The difference between the energies per
atom for relaxed and non-relaxed configurations represents the averaged elastic energy. This
value was calculated for each step of the shifting process. To display the result obtained, we
calculated the change in the averaged energy per atom for relaxed and ‘shifted’ systems with
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(a)

(b)

Figure 2. A part of the simulation cluster with the �3〈111〉 grain boundary: (a) isometric view;
(b) side view.



6732 S Dorfman et al

(a)

(b)

Figure 3. A side view of the relaxed �3〈111〉 grain boundary: (a) the non-shifted cluster; (b) the
lower part of the cluster is shifted by 2.5 Å.

respect to the same energy for the ‘non-shifted’ state of the system (see figure 4). The same
procedure was repeated with the cluster containing the B atom at the grain boundary and a
similar curve is also plotted in figure 4. It is easy to see that the presence of B on the �3〈111〉
GB of tungsten increases the value of the energy barrier significantly. Thus boron prevents
sliding along the GB and increases the resistance with respect to the shift in this direction.

The next series of computations were devoted to the simulation of the separation of two
parts of the cluster in the Z-direction (decohesion). As in the previous case, the step in the
shifting process was 0.5 Å, and in each step the system was allowed to relax. The corresponding
change of the energy with respect to the energy of the non-shifted state of the system is given
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Figure 4. The profile of the energy barrier for the simulations of the�3〈111〉 GB sliding along the
X-direction. The dashed line is plotted for the calculations performed for the ‘pure’ W GB. The
solid line corresponds to the simulations of the same sliding process for the case where B is placed
at the GB as shown in figure 2.

in figure 5. In the simulations for the cluster with the B atom it was assumed to remain in
the lower part of the separated system. It may be seen that for the separation process, a small
amount of boron at the GB does not significantly influence the energy of the system and does
not change the ‘formation energy’ of the GB. This conclusion does not apply to the case where
the concentration of B at the GB is not small. The reason for this result is that the W–B
potential that was obtained from ab initio calculations and the recursion procedure comes out
short ranged as compared with the W–W interatomic potential. Thus, in the moving apart
in the Z-direction, this potential does not significantly influence the elastic properties of the
system. At the same time, it is worth noting that the effect would be much stronger if the
number of B atoms at the GB were to be larger. This is not the case for theX-directional shift.
Even a small amount of B at the GB drastically changes the resistance of the GB with respect
to sliding. The reason is obvious: when, let us say, one of the W atoms moves away from B,
the next atom along the grain boundary comes closer, thus approaching the ‘active region’ of
repulsion in the W–B interaction.

To illustrate the distribution of the elastic field in the vicinity of the GB we present in
table 3 the absolute values of the displacements of several atoms calculated with respect to
the non-relaxed system. The same is given for the case where the lower part of the cluster
is shifted by 2.5 Å in the X-direction. The location of the atoms is given in figure 6. The
influence of a boron atom located at the GB on the displacements of the same tungsten atoms
may be seen by comparison of these data with those presented on the right in this table. The
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Figure 5. The change of the energy difference in the separation process in the direction normal
to the �3〈111〉 GB. The upper part of the simulation cluster is moved along the Z-direction. The
curve with crosses displays the results for ‘pure’ GB, while the curve with black circles presents
the results obtained with the B atom in the GB.

Table 3. Displacements of atoms (in Å) after relaxation in the vicinity of the tungsten GB with and
without a B atom. The numbers of the atoms are the same as in figure 6. The data for the ‘shifted’
system correspond to a shift of 2.5 Å in the X-direction along the GB.

W W–B

Number of atom ‘Non-shifted’ ‘Shifted’ ‘Non-shifted’ ‘Shifted’

1 0.111 0.330 0.425 0.291
2 0.314 0.308 0.306 0.302
3 0.461 0.220 0.455 0.089
4 0.029 0.071 0.163 0.303
5 0.162 0.110 0.065 0.111
6 0.408 0.202 0.160 0.240
7 0.219 0.165 0.300 0.183

elastic field slowly decreases in the direction normal to the GB, as may be found by comparing
the displacements of atoms N1 and N4, N2 and N5 etc. At the same time the relative change
of the displacement in the case of the shifted GB is less than that for the non-shifted GB. A
detailed comparative analysis of the fine atomic structure in the vicinity of the GB sheds some
light on the behaviour of the system in the simulated process when the lower part of the cluster
is shifted in the X-direction.
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Figure 6. Positions of seven tungsten atoms in the vicinity of the�3〈111〉 GB. The displacements
of these atoms are given in table 3.

Let us consider the interactions of the atom N1 that is located at the GB with the rest of
the atoms situated below the GB. A shift in the positive X-axis direction results in an increase
in the average ‘density’ of atoms in the vicinity of atom N1. The effective distance from this
atom to its nearest neighbours in the lower part of the cluster decreases and they ‘feel’ more
strongly the repulsive part of the W–W interatomic potential. Thus, the energy of the system
increases. At the same time, as illustrated by the data from table 3, the effective repulsion
between atoms prevents relaxation of the lattice and the absolute values of the displacements
for the 2.5 Å shift become smaller in comparison with those for the non-shifted GB. Further
shift returns the system to the starting, ‘non-shifted’ situation because of the lattice periodicity
in the X-direction. The presence of a boron atom at the GB makes the effect stronger. We
locate this atom in the nearest neighbourhood of the atom N1 as shown in figure 6 and study the
behaviour of the same atoms as in the case of the tungsten GB without boron. The repulsive
W–B interaction increases the energy and prevents the displacements of the W atoms. The
system now has a larger density of atoms in the vicinity of tungsten atom N1. Comparing
the displacements of W atoms from table 3 for the ‘non-shifted’ case, we see that addition
of boron effectively leads to a decrease in the absolute values of displacements. The system
becomes more ‘rigid’. The same happens when the lower part of the cluster shifts by 2.5 Å
in the X-direction. Additional repulsion between B and W atoms increases the value of the
energy barrier in the shifting process, thus improving the resistance of the system with respect
to the X-directional shift.

To compute the tensile shift energy, γtens , associated with the shift in the X-direction
along the�3〈111〉 GB, we define it as the excess energy per unit surface area of the GB for the
‘shifted’ relaxed system relative to the one for the ‘non-shifted’ relaxed system. In the same
manner we define the energy of decohesion of the GB, γdecoh, as the difference between the
energy per unit surface area of the GB for the relaxed system ‘shifted’ in theZ-direction relative
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to the one for the ‘non-shifted’ relaxed system. As illustrated by figure 5, at distances between
3.5 Å and 4.0 Å the energy difference per atom in the separation process does not exceed
3%. The calculations show that this value changes insignificantly when the distance between
the divided parts of the cluster changes from 6 Å to 6.5 Å. The value γdecoh is calculated for
the case where two parts of the simulation cluster are separated by the distance 6.5 Å. The
influence of B on the energy characteristics γtens and γdecoh of the GB in W is clearly seen
from table 4. Both quantities increase as compared with those for the ‘pure’ GB. The relatively
small increase of γdecoh is due to the low boron concentration at the GB. Our estimations for
the case where B occupies all interstitial sites in the trigonal prism position at the GB give
γdecoh equal to 0.613 eV Å−2. Such a situation may occur if B atoms segregate to the GB.
This leads to an increase of the amount of B at the GB and to a transfer of B from the bulk
to the GB. These results on the influence of boron atoms on the mechanical properties of the
GB correspond well with the results of molecular dynamics atomistic simulations reported
in [14]. These simulations were performed for much higher concentrations of boron at the
GB and with semi-empirical potentials. Unlike the authors of reference [14], we used in our
simulations interatomic potentials extracted from ab initio calculations by an explicit inversion
procedure. Experimental investigation of W alloyed with B revealed a significant drop in the
ductile–brittle transition temperature [41–43]. We showed that even a small amount of B
increases the fracture resistance of the �3〈111〉 GB in W.

Table 4. Surface energy characteristics (in eV Å−2) of the GB resistance with respect to a tensile
shift and decohesion for the �3〈111〉 GB in tungsten and for the GB with a boron atom.

�3〈111〉 GB in tungsten
Energies �3〈111〉 GB in tungsten with boron interstitial

γtens 0.2420 0.4514
γdecoh 0.3424 0.3457

Additional quantitative characterization of the effect of B on the sliding may be obtained
from the dependences of the GB energy barriers on the relative displacement between the upper
and lower parts of the simulation cluster, i.e., from the data on the fine profile of these barriers.
The stress required to slide the equilibrium GB, σslide, is estimated as the maximal slope in
the plots of GB energy versus relative displacement (see, for example, [44] and references
therein):

σslide = ∂γGB

∂x1
(39)

where γGB is the GB energy. Our calculations show that this value for the ‘pure’ GB in W is
about 29.5 GPa. The inclusion of B as the impurity in the GB increases this value and we get
48.6 GPa. We expect the σslide-values to be overestimated because only pairwise interactions
were included in the simulations. Accounting for many-body interactions is known to decrease
energy differences. So, the calculated values for stresses may become smaller, and the B effect
may be less pronounced. However, the result obtained demonstrates the influence of B on the
mechanical properties of the GB in W in the sliding process.

6. Discussion

We have presented in this work the results of a non-empirical study of the properties of the
�3〈111〉 GB in tungsten. A scheme for extracting the interatomic potentials of A–B type
from ab initio calculations has been suggested. In contrast to the embedded-atom method
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[45, 46], the formalism developed here makes it possible to account not only for A–A and B–B
interactions, but also for A–B interactions in a binary system. This includes taking into account
the three-body terms as well. Our approach allows A–A–B, A–B–B, and B–B–B interactions to
be obtained. This is a distinguishing feature as compared with the Finnis–Sinclair method [47]
that is usually called ‘theN -body potential approach’ and includes the effective atomic density-
dependent term. The atomic density used in reference [47] actually represents an environment-
dependent effective coordination number for the host system. Further modification of the
method given in reference [17] includes addition of a term to the total energy. This term has
the meaning of the energy of interaction between the impurity and host atoms. It is presented
as a sum of ‘environment-sensitive embedding’ energies and is associated with the electron
density at the site of the impurity atom due to the surrounding host atoms. At the same time, in
these methods the interaction between impurities is not considered. This makes the application
of these schemes to binary systems with non-small concentrations of impurities questionable.
Our approach is free of this shortcoming.

It is worth comparing the scheme suggested in our simulations with the recursive potentials
recently suggested in references [48–51]. The procedure that is used there to extract the inter-
atomic potentials for host and impurity atoms is restricted: only the ordered phases in some
stoichiometric compositions are considered. As follows from [50, 51], the potentials of A–B
type are concentration dependent. This may be recognized by comparing the data obtained in
[50, 51] for FeAl (B2) and Fe3Al (D03), NiAl (B2) and NiAl (L12), and for different Al–Li
phases. The same result follows from ab initio calculations for the Fourier transforms of
mixing potentials [52, 53]. Several additional comments should be made concerning the links
of the formalism developed here with the phenomenological theory of solid solutions. The
methodology that we suggest here allows accounting for the concentration dependence of A–B
interatomic potentials in a direct way. The model of the RSS applied does not prevent one from
obtaining this dependence. In fact, if U from equation (14) is a constant value independent
of the concentration, then the potentials will also be concentration independent (actually there
will still be some indirect dependence on concentration because of the changes of the lattice
parameter of the alloy). At the same time, performing ab initio calculations for the mixing
energy in binary disordered solid solutions at different concentrations, we may obtain the
deviation from the RSS model. This means that U becomes a function of concentration and
may be given as U(c), which simply means that the mixing energy now has to be given in the
form

�E = U(c)A)cA(1 − cA). (40)

The functional form of U(cA) defines the deviation from the RSS model, and different types
of this function determine subregular, subsubregular, etc solid solutions. The situation is well
known from experiments. Such and more complicated models are often used in computer
modelling of phase diagrams [23]. Our scheme for getting A–B interatomic potentials
immediately generalizes to this case. For each concentration of interest, c(1)A , the mixing
energy has to be calculated as a function of the lattice parameter, a (or volume per atom).
The quantity U(c(1)A ) as a function of a has to be calculated from equation (40) and the A–B
interatomic potential for this concentration may be obtained with equation (15) using the
recursion scheme. When concentration changes, the procedure has to be repeated. In our
approach in the framework of the recursion procedure, we have to use the summation over
the lattice vectors of the Ising lattice (that is, the lattice of the random solid solution). In the
scheme presented, we do not need to concern ourselves with the possible superstructures that
may appear if ordering occurs at some concentrations. This is justified by the fact that the effect
of ordering on the interatomic potentials is very small and does not exceed several per cent
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(see, for example, reference [54]). The concentration effects on the interatomic potentials
are of much higher magnitude and we obtain, in principle, concentration-dependent potentials.
Elsewhere, we will discuss the application of this scheme to the study of the ordering processes
in alloys.

The formalism suggested in our paper for the development of the three-body interatomic
potentials for binary solid solutions in some sense justifies the model of subregular solid
solutions. It proves in a direct way that many-body (in our case, three-body) interactions in the
alloy are responsible for the deviation from the regular solid-solution model. Concentrations of
the elements enter the terms that are representing three-body interactions in our case. Together
with the radial functions gAA(r), gBB(r), and gAB(r), this defines the deviation of U from the
constant value. The statement formulated becomes more transparent on comparing the terms
in the subregular solid-solution model with the theory derived above. In this model the mixing
energy is given as

�E = U(cA)cA(1 − cA) = (L0 + L1cA + L2c
2
A + · · ·)cA(1 − cA) (41)

where L0, L1, L2, . . . are constants. If the condition L1 = L2 = · · · = 0 is satisfied, then
equation (41) and U = L0 give the RSS model. This situation was already discussed in
section 3. It is clear that if L1 �= 0, then the corresponding term is linked to the three-body
interactions, while L0 includes pairwise interactions. If the four-body interactions are taken
into account, then L2 will become not equal to zero. Moreover, among four-body interactions
there will be concentration-dependent terms that may be grouped with the three-body ones,
i.e. included in L1. Also, among the four-body interactions, concentration-independent terms
will exist which may be formally included inL0. This will renormalizeL1 which is responsible
for the three-body interactions and L0 which describes the pairwise interactions. We already
have a similar result in our case: among the three-body interactions we see in U various terms
that are concentration independent and may be formally included inL0, thus renormalizing the
pairwise interactions. Such a situation always occurs in the many-body theory, and detailed
discussion on this subject may be found for example in reference [55].

Finally, the ab initio potentials obtained were applied in atomistic simulations. We
demonstrated by means of direct calculations the influence of boron located in the tungsten
GB on the resistance of the GB to shift in the plane of the GB and to GB formation. Our results
demonstrate that B increases the energy of the GB decohesion and the resistance of GB with
respect to tensile shift along the GB. The latter result is supported not only by the calculation
of the relative change of the value of the energy barrier in the shifting process, but also by the
fine profile of this barrier. Our conclusions coincide qualitatively with the findings of [14] and
indirectly with experimental data [41–43].
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